29 research outputs found

    Discreteness Effects in Population Dynamics

    Full text link
    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions

    Finite-time and finite-size scalings in the evaluation of large-deviation functions: Analytical study using a birth-death process

    Full text link
    The Giardin\`a-Kurchan-Peliti algorithm is a numerical procedure that uses population dynamics in order to calculate large deviation functions associated to the distribution of time-averaged observables. To study the numerical errors of this algorithm, we explicitly devise a stochastic birth-death process that describes the time evolution of the population probability. From this formulation, we derive that systematic errors of the algorithm decrease proportionally to the inverse of the population size. Based on this observation, we propose a simple interpolation technique for the better estimation of large deviation functions. The approach we present is detailed explicitly in a two-state model.Comment: 13 pages, 1 figure. First part of pair of companion papers, Part II being arXiv:1607.0880
    corecore